电感

与电容器和电阻一样,电感也是无源元件。简单地,电感器是电导材料的扭转线或线圈。电感是电导体或电路的特性,与电流流动的变化相反。

具有电感性的电导体或电路元件被称为电感器。当线圈或绞合线(电感器)中存在电流的变化时,通过在其自身和附近的导电材料中产生或诱导电动势(EMF)来实现这种改变。

电容是导体存储电荷的能力的量度。电场能量。相反,电导体的电感是其存储磁性电荷的能力I.。

电感器以磁场的形式存储能量。由于磁场与电流的流动相关联,电感与电流承载材料相关联。线圈的电感与线圈的匝数成比例。

塑料,木材和玻璃等二电材料具有最小电感。但是铁磁性物质(铁,Alnico,铁铬)将具有高电感。

电感单位是亨利,微亨利,毫安等。它也可以在Weber /安培中测量。韦伯和亨利之间的关系是1h = 1 WB / a。

要了解线圈的电感,我们应该了解Lenz法律,解释了我们EMF如何在电感中诱导。亚博彩票下载Lenz的定律指出,“由于磁通量的变化引起的诱导EMF的极性是这样的,产生电流,其磁场与产生它的磁通量的变化相反。

电感的另一个定义是“通过施加1伏的电压在线圈中产生的电磁力,并且恰好等于一个亨利或1安培/秒”。

换句话说,对于电压V1的1伏,电流的流速为1AMP / SEC,然后线圈的电感为L,测量1个亨利。这可以给出

di / dt(a / s)

DI在电流中发生变化,在安培中测量

DT表示用于当前更改所采取的时间(以秒为单位)。

给出电感器(线圈)中的感应电压

VL = -L di / dt(伏)

负符号表示每单位时间线圈中的相反电压(di / dt)。

它们是2种类型的电感,它们是2种

  • 自感
  • 相互电感

自感

电感或自电感是当电流流动变化时在其上引起EMF的电流承载导体的性质。

当交替变化电流流过电感线圈时,线圈中的磁通量也会变化,以产生诱导的EMF。该过程称为“自感应”,线圈实现的电感被称为“自电感”。

通过假设电流承载电路元件或N匝的电感线圈,可以理解自电感的概念。当电流流过线圈时,在线圈中产生磁场。

由于该磁场而引入磁通量。然后,线圈的自电感是每单位电流的磁通量连杆。当电感线圈拦截由电场引起的磁通量线时,将在线圈本身中诱导自动燃料。

换句话说,自电感装置,线圈反对当前的变化的能力。它在亨利测量。线圈的磁性或磁性影响线圈的自电感。

这是铁磁材料用于通过增加其中的磁通量来增加线圈的电感来增加线圈的电感的原因。

找到线圈自感的表达式是

l =nφ/ i

其中n表示线圈中的转弯数

φ是磁通量

我是由于所产生的EMF导致的当前

l表示铰接中的电感值。

自诱导的EMF和自感系数

我们知道流过电感器的电流由I,φ是磁通量。它们都彼此成正比。所以它可以表示为Iαφ。

电感器中的匝数也与线圈中的电流成比例。我们可以导出当前与IT引起的EMF之间的关系

(dφ)/ dt = l(di)/ dt

电感的值取决于线圈的几何形状或形状。这是值被称为“自感系数”。

e = - (dφ)/ dt

E = - L(di)/ dt

我们可以根据需要使用高或低渗透材料和具有不同匝数的线圈来设计电感线圈。给出了电感器内部的磁通量为

φ= b x a

这里B是磁通密度,a是线圈占据的区域。

长螺线管中的自感

如果我们考虑具有其横截面区域A和长度L的长空心螺线管,并且具有n匝数的长度L,则其磁场引起的电流I表示为

B =μ0h=μ0(n.i)/ l

螺线管中的总通量为Nφ= Li。

将其替换在上面的等式中,

l =nφ/ i

l =(μ0n2a)/ l

L是亨利自感的地方

μ0是空气或中空空间的渗透性

n表示线圈中的匝数。I. I.电感器

A是螺线管的内横截面积

L是线圈的长度为米。

这是长长的空心螺线管的自感。μ表示填充螺线管的材料的绝对渗透性。在这种情况下,我们计算了中空螺线管的自感,因此我们使用μ0。

为了具有高渗透性或产生高磁通量,我们将螺线管与铁磁物质填充,如软铁。

圆形线圈的自感

让我们找到圆形电感器的自感。考虑一个带有横截面区域的圆形线圈a =πr2,其中n次数。然后给出磁通量

b =μ0(n.i)/ 2r

圆形导体中的总通量作为nφ= li给出。

将其替换在上面的等式中,

l =nφ/ i

l =(μ_0n2a)/ 2r

我们知道圈子的区域是a =πr2,所以还给出了圆形电感的自感

l =(μ0n2Πr)/ 2

影响自感的因素

观察到上述电感方程,我们可以说有4个因素影响线圈的自感,它们是

  1. 线圈中的转数(n)
  2. 电感线圈的面积(a)
  3. 线圈长度(L)
  4. 线圈的材料
  • 转弯数量

线圈的电感将取决于线圈的匝数。线圈中的匝数或扭曲和电感彼此成比例。nα1.

匝数越高意味着刨丝器电感的值。

降低匝数意味着降低电感值。

  • 横截面面积

线圈的电感随着电感器的横截面积的增加而增加。Lαn.如果线圈的面积高,则会产生更多数量的磁通量线,这导致形成更多的磁通量。因此,电感会很高。

  • 线圈长度

在较长线圈中感应的磁通量小于短圈中诱导的磁通量的磁通量。随着感应磁通量减小,线圈的电感也降低。因此,线圈的诱导与线圈的电感成反比。Lα1/ L.

  • 线圈的材料

包裹线圈的材料的渗透率将对诱导的EMF和电感产生影响。具有高渗透性的材料可以产生低电感。

Lαμ0。

我们知道μ=μm

所以lα1/μr

自化例

考虑其中的空心芯(电感器),其具有600匝的铜线,当我们通过10安培的DC电流时,产生10毫巴的磁通量。现在让我们计算铜线线圈的自感。

自感例

为了找到线圈的电感,我们使用L和I之间的关系。

l =(nφ)/ i

鉴于,n = 600圈

φ= 10 mille weber = 0.001 WB。

我= 10安培

所以电感L =(600 x 0.01)/ 10

= 600毫克亨利

相互电感

由于其耦合或相邻线圈的电流变化而导致线圈中的EMF的现象称为“互感”。这里,两个线圈处于相同磁场的影响。

正如我们在自化概念中讨论的那样,由法拉第法律解释导致的EMF由法拉第的法律解释,Lenz的法律可以描述EMF的方向。

EMF的方向总是与磁场的变化相反。在第二线圈中感应的EMF是由于第一线圈的电流的变化。

可以给出在第二线圈中感应的EMF

EMF2 = - N2 AΔB/ΔT= -M(ΔI1)/ΔT

其中M是互感,其是第二线圈中所产生的EMF与第一线圈中的电流变化之间的比例。

相互电感

要了解互感的概念,请遵守上述图片。在那我们连接两个电感器缠绕在单个导体周围。让我们称为循环1和循环2.如果环1中的电流是变化的那么诱导磁通量。

当回路2拦截磁通量时,然后在没有任何电流直接流入第二线圈的情况下,将有一些EMF诱导。这被称为互感,这种现象称为“互感”。

相互诱导的EMF和互感系数

每当我们将2个线圈保持在当前变化的场中时,由于电流的流动将会产生EMF。随着环路中的电流变化,磁通量也变化。

在这种情况下,互感是向量量,因为由于第1线圈中的电流流动,它可能在第二线圈中引起,或者由于第二线圈产生的磁通量(b),可以在第1线圈中引起第一线圈

相互诱导的EMF和互感系数

当在电感器1中流动的电流变化时,将在其周围产生磁通量(根据Lenz的法律和法拉第的法律)。然后,将给出由于第一线圈中的电流引起的第二线圈中的相互诱导的EMF

M12 =(n2φ12)/ i1

其中M12是线圈2中的相互电感

n是循环中的转弯数

φ12是线圈2中产生的磁通量

I1是循环1中的电流

以相同的方式,当我们改变电感器1中的电流流动时,磁通量会产生它。然后给出由于第二线圈中的电流引起的第1线圈中的相互诱导的EMF

M21 =(n2φ21)/ I2

其中M21是线圈1中的互感

n是循环中的转弯数

φ21是线圈1中产生的磁通量

I2是循环2中的电流

我们需要记住的重要事项是M21 = M12 = M,而不管两个线圈的相对位置,尺寸和转弯次数。这被称为“互感系数”。

每个线圈的自电感的公式

l1 =(μ0μrn12a)/ l和l2 =(μ0μRn22a)/ l

从上述等式中,我们可以编写M2 = L1 L2。这是每个线圈的自电感与互感之间的关系。

它也可以写作m =√(l1 l2)亨利。上述等式代表了不泄漏通量的理想条件。但实际上,由于线圈的位置和几何形状,总有一些磁通泄漏。

磁耦合系数或耦合系数

两个线圈之间的电感耦合量由“耦合系数”表示。耦合系数的值将小于1并且总是大于0即它位于0和1之间。这用'k'表示。

耦合系数的推导

考虑分别具有N1和N2转动的长度L1和L2的两个电感线圈。线圈1和2中的电流是I1和I2。假设由于电流I1引起的第二线圈中产生的磁通量是φ21。然后将给出互感为m =n1φ21/ i1

φ21可以描述为与第二线圈连接的磁通φ1的一部分。IE。φ21=k1φ1

... m = n1(k1φ1)/ i1。。。。。。。。。。 (1)

类似地,由于电流I2引起的第一线圈中产生的磁通量是φ12。然后将给出互感为m =n2φ12/ i2

φ21可以描述为与第二线圈连接的磁通φ1的一部分。IE。φ12= k2φ2

... m = n2(k2φ2)/ i2。。。。。。。。。。 (2)

乘以等式(1)和(2),我们得到

M2 = K1 k2 [n(1φ1)/ i_1]。[n(2φ2)/ i2]

现在我们知道线圈1的自感是L1 =N1φ1/ I1

线圈1的自感是L2 = N2φ2/ I2

以上述等式代替L1和L2

m2 =(k1 k2)x(l1 l2)

... m =√(k1 k2)x√(l1 l2)

让k =√(k1k2)

... m = k√(l1l2)

其中k是耦合系数

k = m /((√(l1 l2))))

我们可以通过使用磁耦合系数来描述两个线圈的磁耦合。当一个线圈的磁通量与另一个线圈完全链接时,耦合系数将很高。

耦合系数的最大范围为1,而最小为0.当耦合系数的值为1时,线圈被称为“完美耦合线圈”。如果值为0,则线圈称为“松散耦合线圈”。

笔记

K值永远不会是负的,也不是小数价值。

铁芯耦合电路的耦合系数是k = 0.99

铁芯耦合电路的耦合系数是k = 0.4至0.7

自感和相互电感综述

  • “电感”是扭曲线圈在用电压施加电压时体验磁力的现象。电感器以磁场的形式存储能量。它在亨利测量。
  • 电感中的诱导可以由Lenz的法律和法拉第法律解释。Lenz的法律指出,“诱导的EMF是在当前方向产生的反对导致产生EMF的助焊剂”。
  • 它们是2种类型的电感,它们是2种
  1. 自感
  2. 相互电感
  • 自电感的定义:线圈的自感是当其放置在电流变化电路中的土壤中电动势的诱导。这种自感的这种现象被称为“自我诱导”。由l. l =nφ/ i表示
  • 长螺线管的自感是L =(μ0n2a)/ l
  • 圆形核心的自感为l =(μ0n2Πr)/ 2
  • 自电感将取决于线圈(n),电感线圈(a)的面积,线圈(L)的长度,线圈的材料。
  • 相互诱导的定义:由于其耦合线圈电流变化而导致线圈中的EMF的现象称为“互感”。m =√(l1 l2)
  • 耦合因子的定义:两个线圈之间的电感耦合量由“耦合系数”表示。
  • 耦合系数的值将小于1并且总是大于0.这用'k'表示。k = m /((√(l1 l2))))

2回复

  1. 计算用于安装在PCB上的基于Bobbin的电感器所需的公式是什么?

    VIN = 230VAV.
    f = 50Hz.

    请建议一些惯例来计算上述电感

发表评论

您的电子邮件地址不会被公开。必需的地方已做标记*